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Human thymocytes, unlike mouse thymocytes, 
express a substantial amount of MHC class II 
molecules on their surface, especially during the 
fetal and perinatal stages (Park et al., 1992). On 
the basis of this observation, we hypothesized 
that a subset of human CD4+ T cells develops 
via a homotypic thymocyte–thymocyte (T–T) 
interaction and performs unique functional 
roles in the periphery. In 1997, this hypothesis 
was first evidenced in an in vitro reaggregate 
thymic organ culture system in which mature 
human CD4+ T cells were efficiently generated 
only when MHC class II molecules were ex-
pressed on immature thymocytes (Choi et al., 
1997). This was again confirmed in an in vivo 
system using mice that were transgenic for plck-
CIITA on a CIITA-deficient background; in 
these mice, MHC class II is only present on  
T cells (Choi et al., 2005; Li et al., 2005). Using 

these mice, we have demonstrated that T–T in-
teractions are as efficient as thymocyte–epithelial 
cell (T–E) interactions in the generation of 
functionally competent CD4+ T cells based on 
alloreactivity and diverse TCR V usage. More 
recently, work from another laboratory has 
demonstrated that T–T interaction–derived 
CD4+ T cells share several functional properties 
with invariant NKT (iNKT) cells, including a 
rapid response upon antigen encounter and the 
secretion of several cytokines (Li et al., 2007b). 
The generation of CD4+ T cells via a T–T in-
teraction is also dependent on the signaling 
lymphocytic activation molecule (SLAM)–
associated protein signaling pathway (Li et al., 
2007a; Veillette et al., 2007). However, T–T  
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Human thymocytes, unlike mouse thymocytes, express major histocompatibility complex 
(MHC) class II molecules on their surface, especially during the fetal and perinatal stages. 
Based on this observation, we previously identified a novel developmental pathway for the 
generation of CD4+ T cells via interactions between MHC class II–expressing thymocytes 
(thymocyte–thymocyte [T–T] interactions) with a transgenic mouse system. However, the 
developmental dissection of this T–T interaction in humans has not been possible because 
of the lack of known cellular molecules specific for T–T CD4+ T cells. We show that promy-
elocytic leukemia zinc finger protein (PLZF) is a useful marker for the identification of T–T 
CD4+ T cells. With this analysis, we determined that a substantial number of fetal thymo-
cytes and splenocytes express PLZF and acquire innate characteristics during their develop-
ment in humans. Although these characteristics are quite similar to invariant NKT (iNKT) 
cells, they clearly differ from iNKT cells in that they have a diverse T cell receptor reper-
toire and are restricted by MHC class II molecules. These findings define a novel human 
CD4+ T cell subset that develops via an MHC class II–dependent T–T interaction.
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into the liver. However, the hepatic migration was not as 
dramatic as that of iNKT cells, only showing 1.5 times that 
of spleen (Fig. S2, B and C). In addition, upon TCR stimula-
tion, PLZF+ T–T CD4+ T cells produced both IFN- and 
IL-4, similar to iNKT cells (Fig. 1 C). Most of the cells se-
creting these two cytokines were not iNKT cells, as they did 
not bind to CD1d/GalCer tetramers (Fig. S2 D). These 
findings suggest that PLZF+ T–T CD4+ T cells and iNKT 
cells follow a common maturation process and share innate 
phenotypes, which might be driven by PLZF expression.

It is intriguing that PLZF is expressed only on a fraction 
of the population of mouse T–T CD4+ T cells (Fig. 1, A and 
B), whereas most of the iNKT cells in humans and mice uni-
versally express PLZF (Kovalovsky et al., 2008; Savage et al., 
2008). To elucidate the environmental factors required for 
PLZF expression in T–T CD4+ T cells, we originally gener-
ated a mixed BM chimera in a 1:1 ratio that eventually  
resulted in a 1:3 ratio (CIITAtg/OT-II), based on the com-
parative ratio of B cells derived from CIITAtg and OT-II BM 
(Fig. S3 D). In this system, OT-II T cells develop only 
through the T–T interaction. In contrast to the polyclonal  
T cells in this chimera, the OT-II T cells expressed neither 
PLZF nor memory markers, suggesting that TCR interac-
tion with endogenous cognate antigen is essential for PLZF 
expression (Fig. 1 D and Fig. S3).

T–T interaction in humanized mice (hu-mice)
To determine whether the MHC class II–dependent T–T 
interaction is a physiological event that normally occurs in 
rats and humans, where thymocytes express MHC class II 
molecules, we developed two kinds of chimeric mouse 
model systems. First, Rag/c/MHCII/ mice were 
lethally irradiated and reconstituted with rat BM–derived 
stem cells. Despite the relatively low level of MHC class II 
expression of double-positive (DP) thymocytes in the WT 
rat (Fig. S4), the reconstituted rat thymocytes allowed the 
positive selection of rat T cells only via T–T interaction, 
because of the complete lack of T–E interaction in this chi-
mera. 8 wk after the graft, we analyzed the developmental  
profile of rat CD4+ T cells from the spleen and thymus  
(Fig. 2 A, top; and Fig. S5 A, top). As expected, CD3+CD4+ 
T cells developed efficiently in Rag/c/MHCII/ mice  
(4.7%; Fig. 2 A), indicating that CD4+ T cell development 
via T–T interaction normally occurs. When we analyzed 
the expression of PLZF, 24% of the developmental interme-
diates (CD4+CD8int stage) from the Rag/c/MHCII/ 
recipient mice showed up-regulated expression of PLZF, 
whereas expression was barely detected in the WT rat  
thymus (Fig. 2 A, bottom; and Fig. S5 A, bottom).

Similarly, we also developed hu-mice via transplantation 
of human cord blood CD34+ stem cells into irradiated NOD.
SCID/c/ (NOG) mice. In this system, it has been re-
ported that developing human T cells have undergone selec-
tion only on human MHC (Traggiai et al., 2004). 14 wk after 
transplantation, when the human CD4+ T cells became fully 
mature in the periphery, expression of PLZF was evident in 

interaction–generated CD4+ T cells (T–T CD4+ T cells) are 
distinct from iNKT cells in that they express a diverse TCR 
repertoire and are restricted by polymorphic MHC class II 
molecules (Lee et al., 2009).

Recently, promyelocytic leukemia zinc finger protein 
(PLZF; encoded by zbtb16) was identified as a transcription 
factor necessary for the development of iNKT cells that is es-
sential to direct the innate characteristics of iNKT cells 
(Kovalovsky et al., 2008; Savage et al., 2008). In addition, we 
have also demonstrated that in the thymus of plck-CIITAtg 
mice with a CIITA type IV promoter (pIV)–null background 
(CIITAtgpIV/ mice), a significant number of T–T CD4+  
T cells express PLZF (Lee et al., 2009). Therefore, the expres-
sion of PLZF can be used as a marker to identify T–T CD4+ 
T cells as well as iNKT cells. However, the existence of CD4+ 
T cells that developed through an MHC class II–dependent 
T–T interaction in humans had been remained unknown.

In this study, we show that fetal human thymocytes and 
splenocytes isolated from second-trimester fetuses express 
PLZF and that PLZF+ CD4+ T cells acquire innate character-
istics during their development. This finding defines a novel 
human CD4+ T cell subset that develops via an MHC class 
II–dependent T–T interaction.

RESULTS
PLZF+ T–T CD4+ T cells in mice
By backcrossing plck-CIITAtg mice into a pIV-null back-
ground, we have generated CIITAtgpIV/ mice in which 
thymocytes are positively selected solely by T–T interactions 
in the thymic cortex and undergo a physiological negative 
selection process in the medulla (Fig. S1; Waldburger et al., 
2003; Lee et al., 2009). In these mice, PLZF was expressed in 
a significant proportion of CD4 single-positive (SP) thymo-
cytes and splenic CD4+ T cells (Fig. 1 A and Fig. S2 A). 
Compared with WT mice, most PLZF+ cells in CIITAtg and 
CIITAtgpIV/ mice were negative for CD1d/-galactosyl-
ceramide (GalCer) tetramer staining, indicating that they 
are not iNKT cells. They are also unlikely to be type II NKT 
cells, as PLZF+ T–T CD4+ T cells normally develop under 
CD1d knockout conditions (Fig. 1 A). Collectively, these 
results demonstrate that the PLZF+ CD4+ T cells are gener-
ated via MHC class II–dependent T–T interactions.

We next asked whether PLZF directs T–T CD4+ T cells 
to have innate properties, similar to those of iNKT cells. The 
expression of memory markers and the ability of mature T 
cells to rapidly secrete IL-4 and/or IFN- after TCR stimu-
lation are well-known hallmarks of innate T cells (Berg, 
2007). In the thymus of CIITAtg and CIITAtgpIV/ mice, 
the majority of T–T CD4+ T cells expressed a high level of 
PLZF, but the expression level of this molecule was decreased 
in splenic CD4+ T cells (Fig. 1 A and Fig. S2 A). As was the 
case in iNKT cells, NK1.1 was expressed on a substantial 
number of CD4+ T cells, and they expressed a relatively low 
level of PLZF in the thymus and spleen. The PLZFlo CD4+ 
T cells uniformly acquired the memory phenotype (CD-
44hiCD62LloCD122hi; Fig. 1 B) and preferentially migrated 
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capsule of mice (Fig. 2 A, middle; and Fig. 2 B, bottom). 
With this procedure, it was possible to compare the PLZF+ 
population in the host thymus, in which only the T–T inter-
action can drive T cell development, with that in the grafted 
thymus, in which both the T–T and T–E interactions can 
drive T cell development. Although both host and grafted  
fetal thymi displayed almost identical developmental profiles in 
terms of the differentiation status of CD4+ and CD8+ T cells, the 

the CD4+CD8int population of human thymocytes (Fig. 2 B, 
top; and Fig. S5 B, top). These cells expressed a high level of 
CD3 and did not bind to the CD1d/GalCer tetramer, 
which indicate that they are mature CD4+ T cells (Fig. S5,  
C and D). As in the spleen, the percentage of PLZF+ CD4+ 
cells also reduced in the liver (Fig. S5 E). To confirm that the 
expression of PLZF depends entirely on the T–T interaction, 
we transplanted a rat or fetal human thymus under the kidney 

Figure 1.  PLZF expression and acquisition of innate properties in mouse CD4+ T cells is dependent on MHC class II–dependent T–T interac-
tions. (A) Flow cytometry of thymocytes and splenocytes from WT, CIITAtg, CIITAtgpIV/, CIITAtgCD1d/, and CD1d/ mice assessing PLZF expression in 
permeabilized CD1d/GalCer tetramer–positive (Tetr+) and –negative (Tetr) populations. The numbers indicate the percentage of each PLZF+ subset 
(TetrPLZFhi, TetrPLZFlo, Tetr+PLZFhi, and Tetr+PLZFlo) among total cells. Representative data from two independent experiments are shown. (B) A repre-
sentative profile of CD24, CD44, CD62L, NK1.1, and CD122 expression versus PLZF expression in gated CD4 SP thymocytes and splenic CD4+ T cells from 
CIITAtgpIV/ mice. PLZFhi and PLZFlo populations could be identified. The numbers indicate the percentage of cells in each quadrant. Representative data 
from six independent experiments are shown. (C) Intracellular flow cytometry for IL-4 and IFN- in WT and CIITAtgpIV/ mice. Splenic CD4+ T cells from 
each mouse were activated with PMA and ionomycin for 5 h and assessed for their cytokine secretion. The numbers in the dot plots indicate the percent-
age of cells in each quadrant. Representative data from three independent experiments are shown. (D) Flow cytometry of thymocytes to assess PLZF ex-
pression in OT-II TCR transgenic thymocytes after CD45.1/OT-II and CD45.2/CIITAtg BM cells were mixed and transferred into lethally irradiated pIV/ 
hosts. The dot plot shows PLZF expression in CD4 SP thymocytes 7 wk after transfer. The numbers indicate the percentage of PLZF+ cells among the 
CD45.1+ (OT-II) and CD45.1 (WT) CD4 SP thymocytes. Spl, spleen; Thy, thymus.
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and neonatal period. Overall, at 16 wk of gestation, 8.1% of 
CD4 SP thymocytes expressed PLZF (Fig. 3 A), and by 26 wk 
of gestation, the expression gradually decreased to 1.4% and 
was undetectable in neonatal thymocytes (Fig. 3, A and B). 
These cells were CD3 positive (Fig. S6 A), and in fetal spleens, 
PLZF expression was seen in 8–15% of splenic CD4+ cells 
(Fig. 3, A and B). These T–T CD4+ T cells expressed CD161, 
the human equivalent of mouse NK1.1 (Fig. 3 C), similar to 
MAIT (Martin et al., 2009) and iNKT cells (Exley et al., 1998). 

frequency of PLZF+ cells was drastically reduced in the grafted 
thymi (Fig. 2 A, middle; and Fig. 2 B, bottom), indicating that 
PLZF is expressed only in response to T–T interactions.

PLZF expression in CD4+ T cells of the human fetus
PLZF was known to be expressed exclusively in iNKT cells 
and mucosal-associated invariant T (MAIT) cells among adult 
human T cells (Savage et al., 2008). We extended the func-
tional and anatomical analysis of PLZF expression to the fetal 

Figure 2.  Rat and human thymocytes drive MHC class II–dependent T–T interaction and PLZF expression in a chimeric mouse system.  
(A) Generation of PLZF+ CD4+ T cells in a rat→mouse BM chimera. Rat BM stem cells were transplanted into irradiated RAG-1/c/MHCII/ mice with  
(middle) or without (top) fetal rat thymus graft. 8 wk after transplant, the recipient mouse thymus, the grafted rat thymus, and the recipient spleen were 
harvested, and PLZF expression in each subset of rat T cells was compared with that of WT rats. CD4 SP thymocytes were subdivided into two stages 
based on CD8 expression, as indicated. The numbers indicate the percentage of cells in each quadrant. Representative FACS data of two mice from two 
independent experiments are shown. The forward scatter (FSC) value is displayed as a linear scale. (B) T cell development and PLZF expression in CD34+ 
cord blood–reconstituted NOG mice with (bottom) or without a human fetal thymus graft (top). 14 wk after the transfer of cord blood cells, PLZF expres-
sion in human T cells was analyzed in the recipient mouse thymus and spleen as well as the grafted human thymus. CD4 SP thymocytes were subdivided 
into three populations based on CD8 expression, as indicated. The numbers indicate the percentage of cells in each quadrant. Representative FACS data 
from three independent experiments are shown.
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TCR diversity of PLZF+ CD4+ T cells
Adaptive T cells are armed with a diverse repertoire of T cell 
receptors, whereas PLZF+ innate T cells, such as iNKT and 
MAIT cells, use a canonical V chain and a limited number of 
V chains (Treiner and Lantz, 2006). As PLZF+ T–T CD4+ 
T cells are restricted by self-peptide–MHC class II complexes 

Furthermore, upon stimulation with PMA and ionomycin, 
PLZF+ cells that produce IFN- were 14-fold greater in pro-
portion than PLZF cells (Fig. 3 D). However, hardly any of 
the PLZF+ CD4+ T cells bound CD1d/GalCer tetramers 
(Fig. 3 E), and their frequency was from 42- to 290-fold 
higher than that of iNKT cells (Fig. S6 B).

Figure 3.  PLZF is expressed in a subset of fetal human CD4+ T cells that have properties similar to mouse T–T CD4+ T cells during the second 
trimester of gestation. (A) Representative expression profile of PLZF in the fetal thymus (GA = 16 wk) and spleen (GA = 23 wk), as well as the neonatal (day 10) 
thymus. The numbers in each quadrant indicate the percentage of cells present. The forward scatter (FSC) value is displayed as a linear scale. (B) Summary  
of PLZF+ cell frequency in the fetal human thymus and spleen. The PLZF+ populations in CD4 SP thymocytes and splenic CD4+ T cells were enumerated by 
flow cytometry at a GA of 16–26 wk. (C) CD45RO and CD161 expression on PLZF+ and PLZF CD4 SP thymocytes or splenic CD4+ T cells from human fetuses 
at a GA of 19 wk. (D) Intracellular flow cytometry of IFN- and PLZF in human fetal CD4+ T cells. MACS-enriched CD4+ T cells from human fetal splenocytes 
were activated with PMA and ionomycin for 5 h. The representative data of two independent experiments. (E) Flow cytometric assessment of the PLZF+ non-
iNKT population in human fetal thymocytes (CD4 SP and DP gated) and CD4+ splenocytes. The iNKT cells were identified using CD1d/GalCer tetramers after 
comparison with cells stained with unloaded CD1d (uCD1d) tetramer. The numbers indicate the percentage of cells in each quadrant. DN, double negative.
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laboratory has demonstrated that PLZF is also expressed in a 
subset of T–T CD4+ T cells (Lee et al., 2009). In this study, 
we demonstrated that PLZF can be used as a marker for cells 
originating from the T–T interaction in mice, and a substan-
tial number of T–T CD4+ T cells were found in the fetal 
human thymus and spleen. Similar to their mouse counter-
parts, human PLZF+ CD4+ T cells had both innate immune 
properties and a diverse TCR V usage. These data indicate 
that the MHC class II–dependent T–T interaction does exist 
and is involved in the generation of a unique subset of CD4+ 
T cells during fetal human lymphopoiesis.

For a detailed analysis, we developed a series of mouse 
model systems in which most of the CD4+ T cells were  
selected by engagement of their TCR with the MHC class  
II–peptide complex on thymocytes. In the first model, 
plck-CIITAtg mice were backcrossed onto mice lacking pIV. 
When MHC class II expression on DP thymocytes was com-
pared with that of B cells, immature thymocytes of both CII-
TAtgpIV/ mice and a human fetus had a similar level of 
expression (Fig. S4 D; Choi et al., 2005). In these mice, 
APCs such as dendritic cells, macrophages, and B cells in the 
thymus also expressed MHC class II comparable to the level 
of WT mice (Fig. S1 B). We also developed a rat→mouse 
BM chimera via transplantation of rat hematopoietic stem 
cells into RAG-1/c/MHCII/ mice. In these mice, 
only rat thymocytes are able to provide the MHC class II–
self-peptide complex for positive selection. Finally, to examine 

in mice, we hypothesized that the TCR V repertoire of 
PLZF+ T cells in humans would be wider than that of iNKT 
(V11) or MAIT (V2 and V13) cells (Treiner and Lantz,  
2006). To confirm this, we analyzed their TCR V chain  
usage. Based on their general diversity and frequency of individ-
ual V chains, PLZF+ T–T CD4+ T cells and conventional 
CD4+ T cells isolated from the thymus or spleen of mice 
showed a similar TCR repertoire (Fig. 4 A). Furthermore, the 
diversity of TCR V usage in human PLZF+ CD4+ T cells 
isolated from lymphoid tissue mimicked the V usage of 
mouse T–T CD4+ T cells (Fig. 4 B). These data suggest that 
the development of PLZF+ CD4+ T cells in humans is similar 
to the development of T–T CD4+ T cells in mice.

DISCUSSION
We have previously identified a novel developmental path-
way for the generation of CD4+ T cells via interactions be-
tween MHC class II–expressing thymocytes in a transgenic 
mouse system (Choi et al., 2005). Although T–T interactions 
have been suggested to be a physiological mechanism for the 
development of functional T cells in mice and humans (He 
and Kappes, 2006; Ladi et al., 2006; Martinic et al., 2006; 
Manz, 2007; Schwartzberg et al., 2009), the developmental 
dissection of this T–T interaction has not been possible be-
cause of the lack of known cellular molecules specific for  
T–T CD4+ T cells. Recently, PLZF had been shown to be a 
lineage-specific marker for iNKT cells, and work from our 

Figure 4.  PLZF+ T–T CD4+ T cells in mice and humans have diverse TCR V usage. The bar graph shows the V chain distribution of PLZF+ and 
PLZF CD4 SP thymocytes and splenic CD4+ T cells from CIITAtgpIV/ mice (A) and a human fetus (GA = 18 wk; B). This is compared with conventional 
CD4+ T cells from a WT mouse (A) and human cord blood (B). The data are mean values ± SEM of four animals in each group of mice, with one human 
fetus and four cord blood samples.
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to be 1/6,000 of the CD4+ T cell fraction in humans and 
have limited TCR V usage (V2 and V13; Tilloy et al., 
1999; Treiner and Lantz, 2006). When compared with TCR 
V usage between the PLZF+ and PLZF populations, un-
like other types of innate T cells, PLZF+ CD4+ T cells ex-
pressed a TCR V repertoire as diverse as that of conventional 
CD4+ T cells in mice and humans (Fig. 4, A and B). Therefore, 
T–T CD4+ T cells are distinct from other types of innate  
T cells (such as iNKT and MAIT cells), particularly in terms 
of TCR V usage and MHC class II restriction.

It is intriguing that PLZF is expressed only in a fraction 
of the population of mouse T–T CD4+ T cells, whereas most 
of the iNKT cells in humans and mice universally express 
PLZF. This discrepancy can be partially explained by the dif-
ferences in the diversity of selecting ligands. The limited 
TCR repertoire of iNKT cells is mainly shaped by a cortical 
event in which only cells with a high-affinity interaction be-
tween the TCR and a very limited number of endogenous 
lipid ligands (e.g., iGb3) are positively selected and survive 
(Bendelac et al., 2007). In this situation, the resulting reper-
toire is extremely skewed and narrowed down to a particular 
TCR usage. On the contrary, T–T CD4+ T cells interact 
with a broad range of self-peptide ligands and, even though 
T cells do not encounter agonistic peptides, they still have 
possibilities for positive selection and survival by multiple 
low-affinity interactions. Among these interactions, cells that 
are engaged by self-peptides of relatively high affinity may 
undergo PLZF up-regulation, thereby providing T–T CD4+ 
T cells with an innate property. In support of this hypothesis, 
OT-II CD4+ T cells selected via a T–T interaction failed to 
express PLZF. In this system, the possibility that an OT-II 
TCR encounters an agonistic selecting ligand is extremely 
low; therefore, they are not able to receive a sufficient signal 
to induce PLZF expression (Fig. 1 D and Fig. S3).

As for a biological relevance of T–T CD4+ T cells, we 
speculate that T–T CD4+ T cells might serve as immediate 
effector cells against diverse pathogens, owing to their rapid 
effector function and extreme TCR diversity as in conven-
tional T cells. Although other innate-like T cells such as iNKT 
or MAIT cells participate in this process, they have canonical 
TCRs restricted by nonpolymorphic MHC class Ib mole-
cules, which limit specificity against foreign antigens. Thus, 
T–T CD4+ T cells would provide a strong defense mecha-
nism, especially for antiviral resistance before the establish-
ment of sufficient memory pools elicited by conventional  
T cells (Lee et al., 2009). T–T CD4+ T cells are able to explain 
the pathogenesis of X-linked lymphoproliferative disorder in 
SLAM-associated protein–deficient patients, in whom T–T 
interactions during thymic ontogeny do not take place (Li  
et al., 2007a). In the absence of rapid effector cells secreting the 
antiviral cytokine IFN-, we speculate that the uncontrolled 
initial viral load leads to a massive lymphoproliferation.

Both T–T CD4+ T cells and iNKT cells are most fre-
quent in the thymus early in gestation. However, their rela-
tive frequency declines with age and they became rarer in the 
neonatal thymus (Sandberg et al., 2004). To address the issue 

the importance of the T–T interaction for the generation of 
PLZF+ CD4+ T cells in humans, similar to the rat→mouse 
chimera, we also developed a hu-mice system using cord-
blood CD34+ stem cells. In this system, it has been reported 
that developing human T cells have undergone selection on 
human MHC, even if mouse MHC class II expression still 
occurs on host thymic epithelial cells (Traggiai et al., 2004). 
These three mouse models efficiently produced T–T CD4+ 
T cells in which PLZF was expressed in a significant propor-
tion of CD4 SP thymocytes. Most of these PLZF+ cells were 
negative for CD1d/GalCer tetramer staining, indicating 
that they were not iNKT cells. To establish a developmental 
environment that was close to the normal thymus, rat or fetal 
human thymic tissues were grafted into their respective chi-
meric mice to support the development of conventional T–E 
CD4+ T cells. The frequency of PLZF+ cells was drastically 
reduced in the grafted thymus, which contained abundant 
selecting thymic epithelial cells. In contrast, PLZF expression 
was observed in a significant population of CD4+ T cells 
from the host thymus, in which the selecting ligands were 
expressed exclusively on immature T cells. Therefore, the 
expression of PLZF can be used as a specific marker for T–T 
CD4+ T cells. One possibility is that non–T cells such as 
macrophages and dendritic cells involve the positive selection 
process. However, it is not likely that these cells efficiently 
select CD4 SP thymocytes because pIV/ mice, in which 
hematopoietic cells in the thymus still express MHC class II 
molecules, contained as few CD4 SP cells as CIITA/ mice 
(Fig. S1 A). Moreover, most of these CD4 SP cells (2.2%; 
Fig. S1) were iNKT cells (Waldburger et al., 2003), whereas 
PLZF+ CD4 SP thymocytes developed in hu-mice were not 
(Fig. S7 D). This has already been confirmed in WT→MH-
CII/ BM chimera, where CD4+ T cells were not devel-
oped (Choi et al., 2005). Based on these results, it seems to be 
justifiable to extrapolate a notion that the T–T interaction 
efficiently develops human CD4+ T cells in hu-mice chi-
mera. Another point of interest is that PLZF+ CD4+ T cells 
in the spleen and liver from xenochimeric mice were even 
smaller in number than those of CIITAtgpIV/ mice. It can 
be explained by the assumption that the PLZF+ population is 
maintained by peripheral T–T interaction. CIITAtgpIV/ 
mice would be a representative example for this, where there 
are more possibilities for T–T interactions in the periphery, 
because the MHC class II expression is almost always present 
in peripheral T cells.

Most importantly, to address whether this T–T event oc-
curs normally and has physiological relevance in humans, we 
dissected the developmental profile of T cells in the fetal  
human thymus and spleen. The frequency of T–T CD4+ T cells 
in the fetal thymus was from 42- to 290-fold higher than that 
of CD1d/GalCer tetramer–positive iNKT cells (Fig. S6 B). 
They are unlikely to be type II NKT cells, as T–T CD4+  
T cells are normally developed under the knockout condition 
of CD1d in the mouse system (Fig. 1 A). Similarly, based on 
the frequency and TCR diversity of the T–T CD4+ T cells, 
they are unlikely to be MAIT cells, which have been reported 
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and c/ mice to generate RAG/c/MHCII/ mice. OT-II mice 
were bred with CD45.1 mice to generate CD45.1 OT-II mice. All mice 
were maintained under specific pathogen-free conditions at the animal facil-
ity at the Center for Animal Resource Development, Seoul National Uni-
versity College of Medicine. Experiments were performed after receiving 
the approval of the Institutional Animal Care and Use Committee of the In-
stitute of Laboratory Animal Resources, Seoul National University.

Antibodies and flow cytometric analysis. The following fluoro-
chrome- or biotin-labeled monoclonal antibodies were purchased from 
BD, eBioscience, or Dinona: anti–mouse CD4 (RM4.5), CD8 (53-6.7), 
CD11b (M1/70), CD11c (HL3), CD24 (M1/69), B220 (RA3-6B2), I-
Ab (AF6-120.1), CD62L (MEL-14), CD44 (IM7), Ki-67 (B56), NK1.1 
(PK136), TCR (H57-597), CD69 (H1.2F3), CD122 (TM-1), IFN-
 (XMG1.2), and IL-4 (11B11); anti–human CD1d (CD1d42), CD4 
(RPA-T4 or OKT-4), CD8 (RPA-T8 or OKT-8), CD45RO (UCHL1), 
CD161 (DX12), HLA-DR (YG18), CD150 (A12), and IFN- (45.15); and 
anti–rat CD4 (Ox-35), CD8 (Ox-8), CD3 (G4.18), CD45R (HIS24), and 
RT1B (OX-6). The anti–mouse V2 (B20.6), V3 (KJ25), V4 (KT4), 
V5.1&5.2 (MR9-4), V6 (RR4-7), V7 (TR310), V8 (F23.1), V10 
(B21.5), V11 (RR3-15), and V13 (MR12-3) antibodies were purchased 
from BD. FITC-conjugated anti–human V1 (BL37.3), V2 (MPB2D5), 
V5.1 (IMMU157), V8 (56C5.2), V11 (C21), V13.1 (IMMU222), 
V17 (E17.5F3.15.13), V21.3 (IG125), and V22 (IMMU546) antibod-
ies were purchased from Beckman Coulter. Allophycocyanin-conjugated  
anti–mouse GalCer-loaded or unloaded CD1d tetramers were gifts 
from A. Bendelac (University of Chicago, Chicago, IL). Human samples  
were also stained with mouse CD1d tetramers, as they are cross-reactive 
(Benlagha et al., 2000; Karadimitris et al., 2001). Fresh cell suspensions of 
thymocytes or splenocytes were resuspended in flow cytometry buffer, i.e., 
PBS with 0.1% BSA and 0.1% sodium azide. Hepatic lymphocytes were 
prepared as previous described (Curry et al., 2000). In brief, liver samples 
were homogenized and hepatocyte-rich matrix was removed by centrifuga-
tion for 1 min at 30 g. The supernatants were harvested and lymphocytes 
were separated by density gradient centrifugation over lympho M solution  
(Cedarlane). After staining with fluorophore-conjugated antibodies for  
30 min at 4°C, the live cells (gated as the propidium iodide–negative popula-
tion; Sigma-Aldrich) were analyzed using a flow cytometer (FACSCalibur; 
BD) and CellQuest Pro software (BD).

Intracellular staining. For intracellular flow cytometry of PLZF, thymo-
cytes and splenocytes were stained as described previously (Savage et al., 
2008). In brief, cells were fixed with the fixation and permeabilization buf-
fers from the Foxp3 Staining Buffer Set (eBioscience). Intracellular PLZF 
was detected using the mouse monoclonal antibody D-9 (Santa Cruz Bio-
technology, Inc.), and in some experiments, a biotin-conjugated D-9 anti-
body (Dinona) was used. For cytokine staining, cells were stimulated with  
50 ng/ml PMA and 1.5 µM ionomycin (Sigma-Aldrich) for 5 h; 10 µg/ml 
brefeldin A (Sigma-Aldrich) was added during the last 3 h of stimulation. 
The stimulated cells were surface stained with anti-CD4 and GalCer-
loaded or unloaded CD1d tetramers. Cells were then fixed and stained with 
anti–IL-4 (11B11), anti–IFN- (XMG1.2 or 45.15), and anti-PLZF (D-9), 
followed by fluorophore-conjugated goat anti–mouse IgG1 (A85-1; BD) or 
streptavidin (BD) using the Foxp3 Staining Buffer Set.

BM chimeras. Recipient RAG/c/MHCII/ and pIV/ mice 
were exposed to 800 rad of total body irradiation from a 137Cs source. The 
irradiation was split into two doses separated by 4 h, and the mice were 
rested for 4–24 h before receiving BM cells. Total BM cells were prepared 
from the femurs and tibias of donor mice, and mature T cells were depleted 
using a cocktail of CD4 and CD8 microbeads and magnetic sorting (MACS; 
Miltenyi Biotec). Each recipient mouse received 3 × 106 T cell–depleted 
BM cells in a volume of 300 µl PBS via lateral tail vein injection. The mice 
were analyzed 4–12 wk later. For the generation of the rat→mouse chimera, 
rat BM cells were prepared from the femurs and tibias of Sprague Dawley 

of why the generation of PLZF+ CD4+ T cells is highest  
during the second trimester, we analyzed the molecules that 
are involved in the T–T interaction, such as SLAM (CD150), 
CD1d, and MHC class II. However, they remained constant 
during the fetal and postnatal periods (Fig. S7), indicating that 
factors other than these surface molecules are required for  
T–T interaction. One of the probable candidate is thymus-
specific serine protease (prss16), which is involved in the pro-
cessing of endogenous proteins in cortical thymic epithelial 
cells, thereby regulating the positive selection of CD4+  
T cells. The alternatively spliced transcripts of thymus-specific 
serine protease have been reported to be differentially  
expressed, depending on the fetal and postnatal age of the 
human thymus (Luther et al., 2005; Gommeaux et al., 2009). 
Therefore, purely on a theoretical basis, it is assumed that 
during a particular developmental stage of the thymus, T–E 
interaction would be much less efficient and, subsequently, 
T–T interaction would dominate over T–E interaction. This 
issue is currently being investigated in this laboratory.

A report from one independent laboratory showed drastic 
developmental suppression of iNKT cells in CIITAtg mice 
using CD4 promoter (Li et al., 2009), whereas this was not 
the feature in our mouse model (Fig. 1 A; Fig. S2 A; and  
Fig. S8, #16 CIITAtg) used in experiments. This discrepancy 
seems to be caused by a different MHC class II expression 
level, because the similar suppression of iNKT cell develop-
ment was also seen in another founder line from this labora-
tory (Fig. S8, #1 CIITAtg) that expresses a much higher level 
of MHC class II on DP thymocytes (Fig. S8).

Another point we would like to emphasize is that the 
number of PLZF T–T CD4+ T cells was four- to fivefold 
higher than that of PLZF+ T–T CD4+ T cells in CIITAtgpIV/ 
mice, and the same might be true in humans. This data suggests 
that the actual number of T–T CD4+ T cells that developed 
from the T–T interaction might be greater than the number 
of T–T CD4+ T cells expressing PLZF.

In summary, we have shown that the MHC class II–
dependent T–T interaction normally takes place during human 
thymopoiesis, and these events could be tracked by PLZF 
expression. We speculate that the biological relevance of  
T–T CD4+ T cells is the generation of early effector T cells 
against diverse foreign pathogens, particularly viruses. It has 
been generally accepted that the T–E interaction is the only 
pathway for the generation of functional CD4+ T cells. How-
ever, this developmental pathway might be revised by the 
addition of a novel CD4+ T cell subset, T–T CD4+ T cells.

MATERIALS AND METHODS
Mice. The plck-CIITAtg mice were previously generated in our laboratory 
(Choi et al., 2005). RAG-1/, c/, MHC class II/, CIITA/, 
CD45.1 congenic B6, OT-II TCR transgenic, and NOG mice were pur-
chased from the Jackson Laboratory. Mice carrying a deletion of promoter 
IV of the Mhc2ta gene (pIV/) were provided by H. Acha-Orbea (Univer-
sity of Lausanne, Lausanne, Switzerland). B6.CD1d/ mice were provided 
by H. Gu (Columbia University, New York, NY). The plck-CIITAtg mice 
were backcrossed to pIV/ or CD1d/ mice to generate CIITAtgpIV/ 
or CIITAtgCD1d/ mice, and RAG-1/ mice were bred with MHCII/ 
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rats, and the stem-cell population was obtained after centrifugation onto a 
28% BSA cushion gradient, as described previously (Prakapas et al., 1993).

hu-mice system. hu-mice were generated as described previously (Ito  
et al., 2002). In brief, NOG mice were irradiated with 220 rad, and at least 2 × 
105 CD34+ cells separated from human cord blood using MACS were intra-
venously inoculated into mice via the lateral tail vein. In some experiments, 
fetal human thymic tissue, which was frozen and thawed once, was engrafted 
under the kidney capsule of mice.

Human tissues and samples. Postnatal thymi were obtained during car-
diac surgery at Seoul National University Hospital, and fetal spleen and 
thymus samples were obtained from aborted fetuses (16–26 wk of gestation) 
from Seoul National University Hospital or Jang’s Women’s Hospital.  
Human umbilical cord blood cells were collected during normal full-term 
deliveries from Jang’s Women’s Hospital. All samples were obtained with 
written informed consent in accordance with the guidelines set forth by the 
Institutional Review Board of the Clinical Research Institute, Seoul Na-
tional University Hospital. The gestational age (GA) of the fetus was calcu-
lated from the last menstrual period. Thymic tissues were teased into 
single-cell suspensions, and splenic mononuclear cells were separated by 
density gradient centrifugation over lympho M solution. Cord blood 
mononuclear cells were isolated from whole blood using Ficoll-Hypaque 
density gradient centrifugation (GE Healthcare), and CD34+ stem cells 
were separated with CD34 magnetic beads (Miltenyi Biotec) according to 
the manufacturer’s instructions. CD34+ stem cells with >95% purity were 
used for transplantation.

Statistical analysis. All data were analyzed using Prism software (Graph-
Pad Software, Inc.). Bar graphs denoting the percentage of each cell or con-
centration of each cytokine represent mean values ± SEM, and data were 
compared using an unpaired t test.

Online supplemental material. Fig. S1 shows thymocyte development 
and MHC class II expression on APCs in the thymi and spleens of WT, 
pIV/, and CIITA/ mice. Fig. S2 shows a summary of the development 
and function of PLZF+ T–T CD4+ T cells in mice. Fig. S3 shows that OT-II 
T cells generated by T–T interaction do not express PLZF. Fig. S4 shows 
the level of MHC class II expression on cortical thymocytes of the human, 
mouse, and rat. Fig. S5 shows anatomical localization of PLZF+ T cells that 
exclusively belong to the category of the CD4+ CD1d/GalCer tetramer–
negative T cell population. Fig. S6 shows CD3 expression on human PLZF+ 
CD4 SP thymocytes and the ratio of PLZF+ CD4+ SP thymocytes and 
splenic CD4+ T cells to iNKT cells. Fig. S7 shows SLAM, CD1d, and MHC 
class II expression on fetal and postnatal human thymocytes. Fig. S8 shows 
the effect of MHC class II expression of DP thymocytes on the development 
of iNKT cells. Online supplemental material is available at http://www.jem 
.org/cgi/content/full/jem.20091519/DC1.
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  Figure S1.   T cell development and MHC class II expression in the thymi of WT, pIV  � / �  , and CIITA  � / �   mice.  (A) The developmental profi le of 

thymocytes from WT, pIV  � / �  , and CIITA  � / �   mice. Single-cell suspensions of thymocytes from 8–10-wk-old mice were analyzed for their CD4 +  and CD8 +  

expression profi les. The numbers indicate the percentage of cells in each quadrant. (B) A comparable level of MHC class II expression on APCs from 

pIV  � / �   and WT mice. A single-cell suspension was prepared from the thymus and spleen of each mouse for the analysis of its MHC class II expression 

level after gating on CD11c, CD11b, and B220.   
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PLZF +  T–T CD4 +  T cells in humans  | Lee et al. S2

  Figure S2.   Development and function of PLZF +  T–T CD4 +  T cells in mice.  (A) Distribution of PLZF +  T–T CD4 +  T cells and iNKT cells. Four subsets of 

PLZF +  cells were identifi ed as indicated (Tetr  �  PLZF hi , Tetr  �  PLZF lo , Tetr + PLZF hi , and Tetr + PLZF lo ), and their frequencies in CD4 SP thymocytes and splenic 

CD4 +  T cells are shown ( n  = 3). Data represent mean values ± SEM. (B) Identifi cation of PLZF +  T–T CD4 +  T cells in the liver of CIITA tg /pIV  � / �   mice. CD4 +  T 

cells in the liver of WT and CIITA tg /pIV  � / �   mice were stained with PLZF and CD1d/ � Gal tetramer. The numbers indicate the percentage of cells in each 

quadrant. (C) Profi les of PLZF +  CD4 +  cells in the thymus, spleen, and liver of WT ( n  = 3) and CIITA tg /pIV  � / �   ( n  = 3) mice. Data represent mean values ± 

SEM. (D) iNKT cells are not responsible for the rapid cytokine production of T–T CD4 +  T cells in mice. MACS-enriched splenic CD4 +  T cells from WT and 

CIITA tg pIV  � / �   mice were activated with PMA and ionomycin for 5 h and examined for their cytokine production by intracellular fl ow cytometry (represen-

tative data from three independent experiments). The numbers indicate the percentage of cells in each quadrant. Tetr,  � GalCer tetramer.   
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  Figure S3.   OT-II T cells generated by T–T interaction do not express PLZF.  Thymocytes from the same chimeric mouse described in  Fig. 1 D  were 

analyzed for their repopulation profi le by CIITA tg  (CD45.2 + ) and OT-II (CD45.1 + ) BM. (A) Thymi from chimeric mice were analyzed for their PLZF expression 

in each developmental subset, which shows the null expression of PLZF in OT-II (CD45.1 + ) CD4 SP thymocytes. The numbers indicate the percentage of 

cells in each quadrant. (B) Summary of PLZF expression in CD4 SP thymocytes ( n  = 4). Horizontal bars represent means. (C) CD45.2 +  CD4 SP thymocytes, 

but not CD45.1 +  OT-II cells, show the memory phenotype. (D) After 7 wk from BM transplantation, the BM chimeric ratio (OT-II/CIITA tg ) was measured as 

1:3 in splenic B cells. The numbers indicate the percentage of cells in each quadrant. DN, double negative.   
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  Figure S4.   The expression level of MHC class II on cortical thymocytes from the human, mouse, and rat.  (A) Single-cell suspension from human 

fetal thymocytes (GA = 23 wk) was analyzed for their MHC class II expression on DP thymocytes, and its expression level was compared with that of pe-

ripheral blood B cells. (B) A representative histogram of MHC class II expression level on DP thymocytes from 8–10-wk-old WT, pIV  � / �  , CIITA  � / �  , and CII-

TA tg /pIV  � / �   mice compared with that of WT splenic B cells. (C) Single-cell suspension from rat thymocytes and splenocytes was analyzed for their MHC 

class II expression, and the ratio of MHC class II expression level on DP thymocytes and B cells (DP/B) was also designated. (D) Summary of the DP/B ratio 

of the fetal human, WT and CIITA tg /pIV  � / �   mouse, and Sprague Dawley rat. S/D, Sprague Dawley.   
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  Figure S5.   Rat and human thymocytes drive MHC class II–dependent T–T interaction and PLZF expression in a chimeric mouse system.  (A 

and B) Supplementary FACS data from  Fig. 2 . Minimal expression of PLZF in double-negative (DN), DP, and CD8 SP thymocytes are shown both in the 

rat→mouse and hu-mice chimeras. (C and D) PLZF +  CD4 SP cells in hu-mice chimera are mature CD4 +  T cells. Thymocytes of hu-mice not grafted with 

the human thymus were stained with CD3, CD4, CD8, and PLZF, and those cells that are positive for PLZF are exclusively CD3 +  (C) and are negative for the 

CD1d/ � GalCer tetramer (D). Representative data of three independent experiments are shown. The numbers indicate the percentage of cells in each quad-

rant. (E) Summary of anatomical localization of PLZF +  cells in hu-mice chimera with or without human fetal thymus graft (pooled data from three inde-

pendent experiments). Horizontal bars represent means. FSC, forward scatter.   
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  Figure S6.   Developmental profi le of PLZF +  T cells in the fetal human.  (A) Thymic PLZF +  CD4 SP cells are CD3 +  in the human fetus (GA = 21 wk). 

The numbers indicate the percentage of cells in each quadrant. (B) The ratios of PLZF +  CD4 +  SP thymocytes and splenic CD4 +  T cells to iNKT cells are 

summarized. n.d., not done.   

  Figure S7.   SLAM, CD1d, and MHC class II expression on human fetal and postnatal thymocytes.  Single-cell suspensions of fetal (GA = 19 wk; 

thick line) and postnatal (5 mo old; dashed line) thymocytes were analyzed for their expression of SLAM, CD1d, and MHC class II molecules. Data are 

shown in gated DP and CD4 SP thymocytes.   
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  Figure S8.   Effect of MHC class II expression of DP thymocytes on the development of iNKT cells.  (A) A representative histogram plot of CIITA tg  mice 

shows a threefold increase of MHC class II expression in founder line #1 compared with founder line #16. (B) CIITA tg  founder line #1 shows a reduced iNKT 

cell development in the thymus, spleen, and liver. The numbers indicate percentages of each PLZF +  subset (CD1dt  �  PLZF hi , CD1dt  �  PLZF lo , CD1dt + PLZF hi , and 

CD1dt + PLZF lo ) among total cells. (C) Summary of iNKT cell development in WT, CIITA tg  (#16), and CIITA tg  (#1) mice ( n  = 3). Data represent mean values ± SEM. 

MFI, mean fl uorescence intensity. CD1dt,  � GalCer tetramer.   
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